Понятия функции и графика

Страница 11

2) график функции растянем от оси абсцисс с коэффициентом 4, отобразим симметрично относительно оси Ox;

Підпис: Рис. 123) график функции сдвинем вдоль оси Oy вниз на 2 единицы.

Последний график является искомым (рис. 12).

Пример 2. Построить график функции .

Снова начнем с преобразований:

.

Построение производится в три этапа:

1) строим график функции ;

2) переносим ось Oy влево на 1 единицу;

Рис. 13

3) затем ось Ox переносим вниз на единицы(рис. 13).

Построить графики функций.1) ;2) [18].

Письменная работа

Учащиеся выполняют письменную работу по теме «Преобразования графиков: сжатие (растяжение) графика к (от) оси абсцисс и оси ординат».

Построить графики функций. 1) ;2) .

Подведение итогов занятия

- Какое преобразование Вы использовали для построения графиков функций?

- Сформулируйте суть изученного преобразования.

Методические рекомендации к 5 и 6 занятиям. Необходимо научить передавать графически качественные особенности функций. Использовать задания различных уровней сложности, давать учащимся возможность самим конструировать задания с целью формирования интереса к изучению данного курса. Все результаты деятельности учащихся (ответы на вопросы по домашнему заданию, решение заданий на доске, активное участие в ходе всего занятия) фиксировать в индивидуальной карточке.

Тема 3. Действия над функциями

Занятие №7. Сумма (разность) функций

Цель: изучить арифметические действия (сложение, вычитание) производимые с функциями, научить учащихся строить графики функций, являющиеся суммой (разностью) других функций.

Ход занятия:

Изучение нового материала

Над функциями, как и над числами, можно производить арифметические действия, т.е. определять сумму (разность), произведение и частное функций. Графики функций , , можно получить, используя правила сложения (вычитания), умножения и деления графиков функций и . Особенно эффективным этот метод бывает в том случае, когда и являются элементарными функциями. Заметим, что осуществлять арифметические действия можно над функциями, имеющими общую область определения или общую часть областей определения. При этом частное двух функций определено, если знаменатель отличен от нуля.

Суммой двух функций и называется функция с областью определения, являющейся общей частью областей определения и , при этом значения функции равны .

Страницы: 6 7 8 9 10 11 12 13 14 15 16

Смотрите также:

Цели, задачи, предмет, объект социально-педагогической деятельности
Цель социально-педагогической деятельности по мнению И.А.Липского следует считать продуктивное содействие человеку в его адекватной социализации, активизирующей его активное участие в преобразовании социума. Такое рассмотрение цели социально-педагогической деятельности базируется на субъектно-объек ...

Каково соотношение между активизацией познавательной деятельности учащихся и проблемным обучением
Некоторые педагоги отождествляют эти два понятия, предлагая ликвидировать и сам термин «проблемное обучение». Проблемное обучение является одним из наиболее эффективных средств активизации мышления ученика. Суть активности, достигаемой при проблемном обучении, заключается в том, что ученик должен а ...

Педагогические идеи Клода Адриана Гельвеция
Гельвеций (1715-1771) прославился как автор книги “Об уме”, которая вышла в 1758 г. и вызвала яростные нападки со стороны всех сил реакции, правящих кругов. Книга была запрещена и приговорена к сожжению. Еще более обстоятельно Гельвеций развил свои идеи в книге “О человеке, его умственных способнос ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2026 - All Rights Reserved - www.newlypedagog.ru