Понятия функции и графика

Страница 19

Исходя из определения, устанавливаются свойства функции :

область определения ;

множество значений ;

функция ограничена ;

для любого действительного числа и любого натурального выполняется равенство . Таким образом, исследуемая функция является периодической, ее период – любое натуральное число, наименьший период 1;

на каждом промежутке функция возрастает, хотя на всей области определения возрастающей не является, она немонотонная.

Рис. 25

Вследствие периодичности функции ее график достаточно построить на промежутке , на остальных промежутках области определения график строится, используя периодичность функции (рис. 25).

График функции изобразится изолированными отрезками прямых на каждом промежутке , , области определения. Эти отрезки геометрически представляют диагонали квадрата со стороной, длина которой равна 1 (длина каждого из отрезков ). Левая крайняя точка диагонали имеет координаты , правая крайняя точка с координатами графику функции не принадлежит. На каждом из указанных промежутков области определения графиком является отрезок прямой, параллельной прямой . Следовательно, функция , имеет «разрыв» в каждой точке с целочисленными абсциссами.

Закрепление полученных знаний

Пример 1. Построить график функции: .

Чтобы понять, как будет выглядеть график функции , надо взять несколько значений из каждого промежутка и посмотреть, что будет происходить с функцией.

x

0

0,3

0,8

0,15

x – 1

-1

-0,7

-0,2

-0,85

y = [ x - 1]

-1

-1

-1

-1

Возьмем значения из промежутка .

Значение функции для из промежутка равно -1, т. е. график на этом промежутке будет представлять собой отрезок прямой .

Рис. 26

Страницы: 14 15 16 17 18 19 20 21 22

Смотрите также:

Характеристика математического образования на рубеже XIX–XX веков
Общее состояние математического образования во второй половине XIX - начале XX в. можно охарактеризовать следующим образом: • преподавание математики в начале рассматриваемого периода носило контекстный (а точнее - практико-ориентированный) характер; • к концу XIX века произошло осознание необходим ...

Методические аспекты подготовки и проведения народных праздников в дошкольном образовательном учреждении
Праздник в дошкольном образовательном учреждении - один из видов досуга детей и взрослых, который в ненавязчивой форме знакомит детей с народными традициями и обычаями русского народа. Организация и проведение праздничных мероприятий расширяет знания детей о знаменательных датах истории страны, об ...

Стэнли Холл, Джон Дьюи и их взгляд на дошкольное воспитание
Знаменитый американский психолог, педолог и педагог Стэнли Холл (1846–1924), отдавая должное вкладу Фребеля в систему дошкольного воспитания, предлагал, чтобы все занятия и игры детей проходили по возможности на лоне природы, чтобы дети видели настоящие вещи, явления природы и хозяйственной деятель ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2023 - All Rights Reserved - www.newlypedagog.ru