Понятия функции и графика

Страница 19

Исходя из определения, устанавливаются свойства функции :

область определения ;

множество значений ;

функция ограничена ;

для любого действительного числа и любого натурального выполняется равенство . Таким образом, исследуемая функция является периодической, ее период – любое натуральное число, наименьший период 1;

на каждом промежутке функция возрастает, хотя на всей области определения возрастающей не является, она немонотонная.

Рис. 25

Вследствие периодичности функции ее график достаточно построить на промежутке , на остальных промежутках области определения график строится, используя периодичность функции (рис. 25).

График функции изобразится изолированными отрезками прямых на каждом промежутке , , области определения. Эти отрезки геометрически представляют диагонали квадрата со стороной, длина которой равна 1 (длина каждого из отрезков ). Левая крайняя точка диагонали имеет координаты , правая крайняя точка с координатами графику функции не принадлежит. На каждом из указанных промежутков области определения графиком является отрезок прямой, параллельной прямой . Следовательно, функция , имеет «разрыв» в каждой точке с целочисленными абсциссами.

Закрепление полученных знаний

Пример 1. Построить график функции: .

Чтобы понять, как будет выглядеть график функции , надо взять несколько значений из каждого промежутка и посмотреть, что будет происходить с функцией.

x

0

0,3

0,8

0,15

x – 1

-1

-0,7

-0,2

-0,85

y = [ x - 1]

-1

-1

-1

-1

Возьмем значения из промежутка .

Значение функции для из промежутка равно -1, т. е. график на этом промежутке будет представлять собой отрезок прямой .

Рис. 26

Страницы: 14 15 16 17 18 19 20 21 22

Смотрите также:

Трудности восприятия иноязычной речи на слух
Аудирование отнюдь не является легким видом речевой деятельности. Так как усвоение иностранного языка и развитие речевых навыков осуществляется главным образом через аудирование, то оно вызывает наибольшие трудности. Аудирование – единственный вид речевой деятельности, при котором от лица ее выполн ...

Формы и методы построения процесса формирования у учащихся эстетических знаний и умений по технологии обработки ткани и волокнистых материалов
Введение в школы, гимназии, лицеи образовательной области «Технология» коренным образом меняет не только содержание учебного предмета «Обслуживающий труд», но и методы обучения, позволяющие вырабатывать у учащихся качества личности, которые предъявляет общество к ним: высокая общая культура, широко ...

Третий этап в математике конечных количеств
Последовательность конечных количеств отражает два изменения: изменение величины конечного количества при переходе от одного члена последовательности к другому; изменение величины связи между двумя конечными количествами, осуществляемое при таком переходе. В возрасте ребенка до 3 лет такое движение ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2025 - All Rights Reserved - www.newlypedagog.ru