Научно – методические идеи Ф.В. Филипповича

Педагогика » Методическое наследие Ф.В. Филипповича » Научно – методические идеи Ф.В. Филипповича

Страница 5

.

Без сомнения, самым удачным следует признать первый способ. Именно этот способ выбрал Филиппович для лабораторных работ в своем учебном пособии «Начальная геометрия». Сначала он предлагает измерить опытным путем объем треугольной пирамиды и треугольной призмы, а затем произвести аналогичный опыт с четырехугольной пирамидой и параллелепипедом. Вообще, по теме «Треугольная пирамида» Филиппович разработал следующий цикл практических упражнений. Первые пять заданий заключаются в том, чтобы по данной развертке треугольной пирамиды определить ее апофему, сторону правильного треугольника и его высоту, боковую и полную площадь пирамиды.

Далее Филиппович пишет:

«Для того, чтобы узнать, как измеряется объем треугольной пирамиды, изготовь из картона треугольную пирамиду и треугольную призму, имеющие одинаковые основания и высоты. После этого, наполняя пирамиду, например, мелким песком, удостоверься, сколько раз надо брать содержимое пирамиды для наполнения призмы. Стало быть,

Объем треугольной пирамиды =……… объема треугольной призмы.

Обьем треугольной пирамиды =………… куб. см.

Сделай из картона брус и квадратную пирамиду, имеющие одинаковые основания и высоты, и таким же способом покажи, как измеряется объем квадратной пирамиды (см.рис.).

Объем пирамиды …….= . объема призмы.

Если обозначить высоту квадратной пирамиды через Н см., а длину стороны квадрата а см., то

Объем пирамиды … = куб. см.»

О преподавании алгебры

Учение о прогрессиях является традиционным разделом в современном школьном курсе математики. Заметим, что сведения о прогрессиях были включены еще в самую первую официальную программу для гимназий в 1845 году и стабильно сохранялись как в до революционной, так и в советской средней школе. Включение этого раздела в курс математики средней школы оправдано сразу из нескольких соображений. Во-первых, арифметическая и, особенно геометрическая, прогрессии имеют широкие применения в экономике и в самой математике (при помощи бесконечной геометрической прогрессии можно изложить учение о периодических десятичных дробях, вычислять пределы интегральных сумм (уделенные интегралы) и т.п.). Во-вторых, здесь школьники получают первые элементарные представления об очень важном магического анализа - теории рядов (арифметическая и геометрическая прогрессии являются примерами простейших числовых последовательностей, а их частичные и бесконечные суммы – примерами частичных сумм и просто сумм числового ряда и т.п.) Изучение данной темы не вызывает принципиальных затруднений у школьников.

Методика изучения прогрессий, описанная В.Р. Мрочеком и Ф.В. Филипповичем, широко использует символическую наглядность и, поэтому способствует более прочному сохранению в памяти информации о прогрессиях.

Отличительной особенностью «Педагогики математики» является также наличие большого набора задач практически по всем рассматриваемым разделам.

Пример задачи к разделу об арифметической и геометрической прогрессиях: «Бедняк предложил богачу жить у него на следующих условиях. Бедняк будет платить своему квартиранту ежедневно на 1 р. Больше, чем накануне, в первый же день уплатит ему 1р. богач, напротив, должен платить так: в первый день – копейку, во второй – две, в третий – четыре, в четвертый – восемь и т.д. В виде опыта они заключили двухнедельное условие. Кто из них отказался от продолжения условия? (Ответ: богач, т.к. ему пришлось доплатить бедняку 58р.63к.)»

Всюду, где это только возможно, авторы стараются выявить существующие методические подходы к изучению темы и построению курса, глубоко и всесторонне анализируют эти подходы, пытаясь установить наиболее целесообразный. Так, после критического анализа трех главных систем построения школьного курса алгебры (в основе первой - учение о тождественных преобразованиях, согласно второй системе материал группируется около двух главных моментов: уравнений первой и уравнений второй степени», в третьей же системе доминирующую позицию занимает функциональная идея) педагоги приходят к следующим выводам:

«В алгебре, как и в других отделах математики, материал должен быть распределен по циклам. Если иметь в виду интересы учащихся, то содержание первого цикла должно ограничиваться вопросами об уравнениях первой и второй степени, решаемых аналитически и графически, и знакомством с практикой логарифмических вычислений. Построение курса должно быть таково, чтобы арифметика и алгебра развивались нераздельно и непрерывно».

Страницы: 1 2 3 4 5 6 7 8 9 10

Смотрите также:

Опыт учителей по формированию текстовых умений учащихся 4-го класса на уроках русского языка
Умение работать с текстом – важное общеучебное умение, характеризующее не только уровень функциональной грамотности, но и культуры человека вообще. Учителя начальных классов формируют текстовые умения своих учащихся с помощью проведения таких видов работы как сочинение и изложение. Сочинение – это ...

Норма и отклонение в развитии человека
Под нормой (от лат. norma) понимают правило, точное предписание, установленная мера. «Социальная норма» («социальные нормы») — это официально установленные или сложившиеся под воздействием социальной практики нормы и правила общественного поведения и проявления человека в конкретно-исторических усл ...

Функции проблемного обучения
По своему содержанию и по поставленным целям традиционное образование ориентировано, прежде всего, на усвоение учащимися знаний, умений и навыков. Кроме того, с гуманизацией всей социальной сферы в традиционном образовании стала декларироваться цель всестороннего и гармоничного развития каждого уче ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2019 - All Rights Reserved - www.newlypedagog.ru