Научно – методические идеи Ф.В. Филипповича

Педагогика » Методическое наследие Ф.В. Филипповича » Научно – методические идеи Ф.В. Филипповича

Страница 3

Вопрос об иррациональных числах излагается здесь весьма доступным образом, сопровождается рядом полезных пояснений. Изложение ведется с опорой на геометрические представления, дается пропедевтика аксиомы непрерывности множества действительных чисел, разъясняется суть несоизмеримости с методологической точки зрения.

Проиллюстрируем эти замечания подробной цитатой:

«Лучше всего начать с исторического примера, . Построив прямоугольный треугольник с катетами по 1, откладываем гипотенузу на оси абсцисс, ее конец лежит, как видно, между 1 и 2, т.е. 1<<2.

Разделив теперь промежуток между 1 и 2 на 10 частей, мы видим, что 1,4<< 1,5.

Проверка: 1,4 2 = 1,96; 1,5 2 = 2,25. Теперь разделив еще на 10 частей промежуток между 1,4 и 1,5 мы видим, что конец гипотенузы лежит между 1,41 и 1,42, следовательно, 1,41 << 1,42.

Действительно, 1,41 2 =1,9881 и 1,42 2 =2,0104. Дальнейшие деления промежутка между 1,41 и 1,42 при нашем масштабе невозможны; но если воспользоваться лупой и при ее помощи нанести такие деления, то мы получим следующие приближения, а именно, 1,414 < < 1,415.

Проверка: 1,4142 = 1,999396 и 1,415 2 =2,002225 показывает, что значение 1,414 точно до 0,1%.

Пользуясь лупой. Или же взяв покрупнее масштаб, мы можем продолжить наши вычисления, но наступит момент, когда учащиеся спросят: как долго это может продолжаться? Предложите им тогда убедиться аналитически в бесконечности такого процесса, а именно, докажите им, что не существует такого дробного числа, квадрат которого равнялся бы 2. Пусть = , где а и b целые взаимно – простые числа. Тогда 2 = , но дробь тоже несократима, и мы пришли к нелепости: целое число равно несократимой дроби. Следовательно, предположение, что есть дробное число, невозможно. Остается допустить, что это число особого рода, пока нам неизвестного. Теперь выступает на сцену аксиома Кантора: надо показать, что такие числа действительно возможны, что они соответствуют реальным объектам. Лучше всего взять непрерывную кривую и показать, что проекции всех ее точек на ось Х-ов должны выражаться числами; одни из перпендикуляров попадут на целые деления, другие - на дробные, но будут и такие, для которых необходимо допустить существование особых чисел - несоизмеримых. Таким образом, непрерывность геометрической области будет связана с непрерывностью арифметической области.

После этого полезно указать учащимся, что несоизмеримость - свойство нашей системы счисления, а не тех величин, какие мы рассматриваем: абсолютной несоизмеримости нет. Возьмем пример. Отношение длины окружности к длине диаметра есть величина постоянная, но число , ее выражающее, в нашей системе счисления является несоизмеримым. Если бы у нас была иная, например, такая система, где единицы писались бы на своем месте, а на втором месте тот же знак выражал бы число не в 10 раз, а в раз больше, и т.д., то тогда в такой системе числа, кратные , были бы соизмеримы, а все соизмеримые числа нашей системы стали бы несоизмеримыми».

О преподавании геометрии

Особый интерес Ф. В. Филиппович проявляет к методике обучения геометрии. Этот интерес вполне объясняется спецификой предмета геометрии, позволяющей в большей степени, чем в других разделах математики, использовать разнообразные средства наглядности. А как уже было отмечено выше, Филиппович испытывал постоянную тягу к наглядным и лабораторным (практическим) методам обучения. Согласно его концепции, предполагается изучение геометрии в два цикла. «В первом цикле,- пишет автор, - должна преобладать интуиция, наглядность. Второй цикл геометрии содержит только необходимое число теорем и задач, составляющих неразрывную логическую цепь». По сути, автор говорит о наглядном курсе геометрии и курсе, в определенной степени, систематическом.

Страницы: 1 2 3 4 5 6 7 8

Смотрите также:

Сущность понятий «здоровье», «здоровый образ жизни»
Улучшение состояния здоровья нового поколения – важнейшая задача современности, в комплексном решении которой невозможно обойтись без общеобразовательной школы. Учителям совместно с родителями, медицинскими работниками, психологами и общественностью необходимо так организовать школьную деятельность ...

Формирование навыков волевой регуляции у воспитанников детского дома подросткового возраста, склонных к делинквентному поведению
Воля есть сознательное регулирование человеком своего поведения и деятельности, связанное с преодолением внутренних и внешних препятствий. Воля как характеристика сознания и деятельности появилась вместе с возникновением общества, трудовой деятельности. Воля является важным компонентом психики чело ...

Взаимодействие педагогов дополнительного образования с родителями и общеобразовательной школой
В современных условиях, когда большинство семей озабочено решением проблем экономического, а порой и физического выживания, усилилась социальная тенденция самоустранения многих родителей от решения вопросов воспитания и личностного развития ребенка. Родители, не владея в достаточной мере знанием во ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2019 - All Rights Reserved - www.newlypedagog.ru