Вопрос об иррациональных числах излагается здесь весьма доступным образом, сопровождается рядом полезных пояснений. Изложение ведется с опорой на геометрические представления, дается пропедевтика аксиомы непрерывности множества действительных чисел, разъясняется суть несоизмеримости с методологической точки зрения.
Проиллюстрируем эти замечания подробной цитатой:
«Лучше всего начать с исторического примера, . Построив прямоугольный треугольник с катетами по 1, откладываем гипотенузу на оси абсцисс, ее конец лежит, как видно, между 1 и 2, т.е. 1<
<2.
Разделив теперь промежуток между 1 и 2 на 10 частей, мы видим, что 1,4<< 1,5.
Проверка: 1,4 2 = 1,96; 1,5 2 = 2,25. Теперь разделив еще на 10 частей промежуток между 1,4 и 1,5 мы видим, что конец гипотенузы лежит между 1,41 и 1,42, следовательно, 1,41 << 1,42.
Действительно, 1,41 2 =1,9881 и 1,42 2 =2,0104. Дальнейшие деления промежутка между 1,41 и 1,42 при нашем масштабе невозможны; но если воспользоваться лупой и при ее помощи нанести такие деления, то мы получим следующие приближения, а именно, 1,414 < < 1,415.
Проверка: 1,4142 = 1,999396 и 1,415 2 =2,002225 показывает, что значение 1,414 точно до 0,1%.
Пользуясь лупой. Или же взяв покрупнее масштаб, мы можем продолжить наши вычисления, но наступит момент, когда учащиеся спросят: как долго это может продолжаться? Предложите им тогда убедиться аналитически в бесконечности такого процесса, а именно, докажите им, что не существует такого дробного числа, квадрат которого равнялся бы 2. Пусть =
, где а и b целые взаимно – простые числа. Тогда 2 =
, но дробь
тоже несократима, и мы пришли к нелепости: целое число равно несократимой дроби. Следовательно, предположение, что
есть дробное число, невозможно. Остается допустить, что это число особого рода, пока нам неизвестного. Теперь выступает на сцену аксиома Кантора: надо показать, что такие числа действительно возможны, что они соответствуют реальным объектам. Лучше всего взять непрерывную кривую и показать, что проекции всех ее точек на ось Х-ов должны выражаться числами; одни из перпендикуляров попадут на целые деления, другие - на дробные, но будут и такие, для которых необходимо допустить существование особых чисел - несоизмеримых. Таким образом, непрерывность геометрической области будет связана с непрерывностью арифметической области.
После этого полезно указать учащимся, что несоизмеримость - свойство нашей системы счисления, а не тех величин, какие мы рассматриваем: абсолютной несоизмеримости нет. Возьмем пример. Отношение длины окружности к длине диаметра есть величина постоянная, но число , ее выражающее, в нашей системе счисления является несоизмеримым. Если бы у нас была иная, например, такая система, где единицы писались бы на своем месте, а на втором месте тот же знак выражал бы число не в 10 раз, а в
раз больше, и т.д., то тогда в такой системе числа, кратные
, были бы соизмеримы, а все соизмеримые числа нашей системы стали бы несоизмеримыми».
О преподавании геометрии
Особый интерес Ф. В. Филиппович проявляет к методике обучения геометрии. Этот интерес вполне объясняется спецификой предмета геометрии, позволяющей в большей степени, чем в других разделах математики, использовать разнообразные средства наглядности. А как уже было отмечено выше, Филиппович испытывал постоянную тягу к наглядным и лабораторным (практическим) методам обучения. Согласно его концепции, предполагается изучение геометрии в два цикла. «В первом цикле,- пишет автор, - должна преобладать интуиция, наглядность. Второй цикл геометрии содержит только необходимое число теорем и задач, составляющих неразрывную логическую цепь». По сути, автор говорит о наглядном курсе геометрии и курсе, в определенной степени, систематическом.
Современные инновационные технологии
В настоящее время существуют более 50 педагогических технологий, созданных педагогами-новаторами (В.Ф. Шаталов, Е.Н. Ильин, Н.А. Зайцев, В.Д. Шадриков, С.Н. Лысенкова и др.), - игровые технологии, технологии индивидуализации обучения, проблемное обучение, коммуникативные технологии, технологии уров ...
Интеграция знаний и умений как условие творческого саморазвития личности
В настоящее время особую актуальность приобретает внедрение в практику обучения таких методов, которые способствовали бы духовному и творческому саморазвитию личности школьника. В этом контексте важна и проблема создания реальных условий для творческого саморазвития как отдельной личности, так и вс ...
Исследование социальной адаптации первоклассников к школьной жизни
Исследование выполнено на базе государственного образовательного учреждения средней общеобразовательной школы № 152 Красногвардейского района. Характеристика базы исследования. Общеобразовательная средняя школа № 152 Красногвардейского района имеет три ступени: начальная школа (1-4 классы), основна ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.