Научно – методические идеи Ф.В. Филипповича

Педагогика » Методическое наследие Ф.В. Филипповича » Научно – методические идеи Ф.В. Филипповича

Страница 8

В самом начале [преподавания] анализа бесконечно малых мы должны исходить из более конкретных и простых задач. Целесообразно подобранными примерами из естествознания следует проиллюстрировать учащимся, что исследование какого-нибудь явления сводится к достижению двух результатов: а) найти общий закон, выражающий ход этого явления (функцию) и b) определить скорость изменения этого явления природы в каждый произвольно взятый момент (производную).

Целью преподавания высшей математики в средней школе ни в каком случае не должно быть только усвоение механизма, техники дифференцирования и интегрирования. При такой методе начала дифференциального и интегрального исчислений потеряли бы всю свою общеобразовательную и воспитательную ценность. Тоже самое можно было бы сказать, если бы весь курс анализа состоял из доказательств теорем и применений их к дифференциалам и интегралам.

По моему мнению, мы должны воспользоваться задачами из физики, химии, техники и др., чтобы на них выяснить происхождение основных понятий дифференциального и интегрального исчислений. Например, какая-нибудь задача из естествознания дает нам возможность составить функцию, изобразить ее графически, затем исследовать и под конец найти ее производную. Подходя таким образом к понятию о производной, мы всегда должны выяснять, в чем сущность задачи дифференциального исчисления и давать наглядное представление (графическое изображение). После графического изображения идет идея и понятие производной, а под конец - термин и символ производной.

При такой системе преподавания ученики вникают в математичность жизни природы и видят наглядно, какое колоссальное значение математики со стороны ее метода. Далее, при изучении анализа, ученикам предоставляется большой простор, чтобы проявить свою самостоятельную работу, самодеятельность и постоянно делать умозаключения. Кроме того, такой порядок вещей не сводит начала дифференциального и интегрального исчислений к собранию непонятных значков и символов, как утверждают некоторые Противники введения анализа бесконечно малых в среднюю школу. Но в этом-то и состоит задача педагогики - сделать науку понятной, заставить ее говорить простымj обыкновенным языком. «Нет мысли, которую нельзя было бы высказать просто и ясно», [говорил] А.И.Герцен. В самом деле, кто следил за учебной заграничной литературой в течение последних 25-30 лет, тот может констатировать что всюду замечается стремление к упрощению изложения материала. Достаточно сравнить новейшие учебные книги со старыми. То же самое можно утверждать и относительно школьных программ и учебных планов. Что касается русских учебников по анализу бесконечно малых, то в этом отношении дело обстоит довольно плохо. Все эти учебники для средней школы построены приблизительно по одному типу. Сначала идет сухое изложение понятия о функции, затем подразделение функций, теоремы о пределах, непрерывность функций, Производная и дифференциал и т.д. Такое построение курса анализа навряд ли может вызывать интерес у учащихся. Некоторые французские и немецкие учебники могли бы послужить хорошим примером, как надо составлять учебное руководство по анализу бесконечно малых для средней школы.

Как всякий отдел математики, анализ бесконечно малых должен быть построен концентрически. Еще с V класса при графическом изображении эмпирических функций мы должны подготовлять почву для дифференциального исчисления. А в VI и VII классах при проведении идеи функциональной зависимости на уроках алгебры следует учащихся знакомить с понятием о производной, а на уроках геометрии - с понятием об интеграле.

В VIII классе - связный обзор изученных в предыдущих классах функций и элементы дифференциального и интегрального исчислений».

Рассматривая методику введения понятия производной Ф. В. Филиппович высказал ряд интересных методических замечаний по поводу изучения конкретных понятий. Так, для введения понятия производной, автор считал необходимым широко привлекать сведения из геометрии, физики, химии и т.п.:

«Учение о производной должно быть разрабатываемо с различных точек зрения. Прежде всего, рассматривая равномерное и неравномерное движение, мы подводим учащихся к понятиям о постоянной скорости, средней скорости в определенный промежуток времени и скорости для некоторого момента t. Таким образом, вводя понятие о скорости изменения в учение о функциях, мы устраиваем аналогию с механическими процессами движения. Сначала скорость есть производная пути по времени, на другом примере у нас получится, что скорость химической реакции есть производная количества реагирующего тела по времени, далее, по известной формуле расширения от теплоты, мы можем определить коэффициент расширения как меру скорости, с которой идет процесс расширения при равномерном нагревании. Конечно, и другие примеры должны показать учащимся, какие разнообразные задачи приводят нас к понятию о производной.

Страницы: 3 4 5 6 7 8 9 10 11

Смотрите также:

Современные требования математической подготовки детей перед школьным обучением
С точки зрения сторонников основывающихся на идеях Л.С. Выгодского, дети старшего дошкольного возраста могут устанавливать существенные связи и способы к освоению некоторых системных знаний. Следовательно, программа дошкольного обучения должна быть построена на какой–то системе, соответствующей воз ...

Зависимость выбора вида сочинения от возрастных особенностей школьников
Чтобы говорить о практическом использовании сочинения на уроках русского языка, необходимо обосновать, почему мы остановили выбор именно на рассуждении, а для этого, в свою очередь, кратко рассказать об особенностях мышления тринадцатилетних детей. Одной из важнейших особенностей школьников являетс ...

Характеристика реализации возрастного похода в деятельности школьного социального педагога
Развитие ребенка, совершаясь во времени, имеет свои внутренние закономерности, определенную периодичность в смене форм отражения. Один этап подготавливает новый этап, качественно отличный от первого, хотя и включающий в снятом виде прошлый. Каждый возрастной период связан с количеством прожитых лет ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2019 - All Rights Reserved - www.newlypedagog.ru