Сравнительный анализ методики ознакомления сравенствами

Страница 10

Особое внимание следует уделять проверке решения уравнения. Учащиеся должны четко знать, усвоить последовательность и смысл действий, выполняемых при проверке: найденное число подставляют вместо буквы в выражение, затем вычисляют значение этого выражения и, наконец, сравнивают его с заданным значением или с вычисленным значением выражения, стоящего в другой части уравнения. Если получаются равные числа, значит, уравнение решено верно.

Дети могут выполнять проверку устно или письменно, но при этом всегда должны быть четко выделены основные ее звенья: подставляем…, вычисляем…, сравниваем…

Методика обучения решению текстовых задач

Традиционная школа.

Уравнения используются для решения задач. Существует правило составления уравнения:

Выясняется, что известно, что неизвестно.

Обозначение неизвестного за х.

Составление уравнения.

Решение уравнения.

Полученное число истолковывается в соответствии с требованием задачи.

Необходимым требованием для формирования умения решать задачи с помощью уравнений является умение составлять выражения по их условиям. Поэтому вводится запись решения задач в виде выражения. Учащиеся упражняются в объяснении смысла выражений, составленных по условию задачи; сами составляют выражения по заданному условию задачи, а также составляют задачи по их решению, записанному в виде выражений.

Одним из самых трудных моментов является запись задачи в виде уравнения, поэтому вначале при составлении уравнения широко используются средства наглядности: рисунки, схемы, чертежи.

Для формирования у учащихся умения решать задачи алгебраическим способом необходимо, чтобы они могли решать уравнения, составлять выражения по задаче и осознавать сущность процесса “уравнивания неравенств”, т.е. преобразования неравенства в уравнение. Уже на первых уроках дети, сравнивая два множества, устанавливают, в каком из них содержится больше элементов и что нужно сделать, чтобы в обоих множествах было одинаковое их количество.

Вместе с тем возможности использования алгебраического метода решения текстовых задач в начальных классах традиционной школы ограничены, поэтому арифметический способ остается в традиционной школе основным.

Система РО.

Сначала учитель читает задачу для общего ознакомления, а затем вновь переходит к чтению, но “по частям”. Учитель (и только учитель!) читает такую часть текста, которая позволяет ребенку нарисовать элемент будущей схемы, затем следующие часть – и опять дети изображают часть схемы, и т.д. Начертив схему, дети должны заменить буквой (х, y, z) неизвестную величину, после чего приступать к анализу отношений между известными и неизвестными величинами.

Схема, которую дети составят к данной задаче, фактически является моделью (обратите внимание на то, что на схеме всегда отсутствует наименование), т.к. с ее помощью может быть решена не только данная задача, а целый класс частных задач. Моделирование (с помощью сначала схем, а затем буквенных формул) как учебное действие служит средством выделения отношений при анализе условий конкретных задач, а сама графическая или (и) беквенно-знаковая модель является средством фиксации выделенных отношений (см. приложении ).

Итак, процесс решения текстовой задачи с буквенными данными в течение первых трех лет мы будем осуществлять в семь этапов.

I этап – это перевод условия задачи в графическую модель, т.е. в схему. Кстати, схема, в отличие от чертежа, не требует, во-первых, специальных чертежных инструментов, и, во-вторых, точного соблюдения заданных отношений. Схема может выполняться от руки, указывать и отображать заданные отношения;

II этап – это преобразование одной графической модели в другую. Этот этап может быть пропущен, если необходимости в преобразовании нет изначально, либо она отпала в связи со свернутостью действия;

III этап – составление буквенно-знаковой модели (формулы), т.е. составление уравнения.

Когда ребенок переходит от схемы к составлению уравнения, то бывают, при правильно построенной схеме, ошибки в описании отношений (заданных через схему) в знаковой форме, т.е. с помощью уравнения. Чтобы предупредить эти ошибки, нужно использовать те значки, которые мы использовали, когда работали над переходом от текста к схеме, от схемы к преобразованной схеме и от нее к знаковой форме. Это были вспомогательные значки – “дорожки”.

Например:

“В три магазина привезли а кг. печенья, во второй – на в кг больше, чем в первый, а в третий – на с кг меньше, чем во второй. Сколько кг печенья привезли в каждый магазин?”

Страницы: 5 6 7 8 9 10 11 12 13

Смотрите также:

Педагогические условия и технологии социально-реабилитационной работы с детьми-сиротами и детьми, оставшимися без попечения родителей в учреждении социального обслуживания населения
Педагогические условия – это целенаправленно созданная обстановка (среда), в которой в тесном взаимодействии представлены совокупностью психологических и педагогических факторов (отношений, средств и т.д.), позволяющих педагогу, социальному работнику эффективно осуществлять воспитательную, учебную, ...

Материал для упражнений по формированию каллиграфических навыков учащихся 2-3 классов
Предлагаем материал для упражнений по формированию каллиграфических навыков учащихся, мы исходим из того, что во 2-3 классах специальных уроков чистописания не выделяется. Упражнения по чистописанию проводятся ежедневно на уроках русского языка в течение 8-10 минут. Совершенствование навыков графич ...

Сравнение масс по инертности тел
Любое тело обладает свойством двигаться по инерции, сохраняя свою скорость неизменной, пока на это тело не подействуют силы. При этом одни тела легче разогнать (а разогнав, остановить), а другие — труднее. Для разгона или остановки груженой тележки на нее следует действовать гораздо большей силой ( ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2025 - All Rights Reserved - www.newlypedagog.ru