Описательная статистика

Страница 12

Используя эти данные, был вычислен коэффициент корреляции 0,71 между переменными. По числовым значениям можно построить точечную диаграмму, а потом заменить множество точек одной прямой линией, точное расположение которой вычисляется при помощи специальных математических преобразований. Такую линию будем называть линией регрессии. Для диаграммы 13.2 там же построена линия регрессии. Линия регрессии наилучшим образом отражает характер существующей зависимости, в ней как бы сконцентрирован весь смысл точечной диаграммы. Именно по виду этой линии и можно делать прогноз результатов. Пусть для какого-то учителя рейтинг учительского параметра 10. Тогда, используя линию регрессии, можно предположить, что класс, с которым тот работает, покажет деструктивное поведение на уровне 8 единиц. Можно решить и обратную задачу – зная степень деструктивности, определить насколько велик параметр "ожидание неправильного ответа". Возможность получения такого рода информации дает массу дополнительных возможностей в работе. Для рассмотренного примера, при построении линии регрессии на реальном материале, результаты можно использовать для коррекции линии поведения как учителя, так и класса.

На рисунке …… представлен ряд примеров точечных диаграмм. Изучая их, вы поймете, что такое взаимосвязь двух величин, и уясните смысл коэффициента корреляции. Коэффициент корреляции, отражающий степень связи, будем обозначать r. Если r больше 0, то связь позитивная, то есть большим значениям одной переменной соответствуют большие значения другой. А если r меньше 0, то связь негативная и отношение между величинами переменных обратное: большие значения сочетаются с малыми и наоборот.

Коэффициент корреляции изменяется в пределах от +1 до –1, а знак его определяется видом связи. Если два параметра сильно связаны, коэффициент корреляции будет близок к единице. А при слабой связи – коэффициент корреляции близок к 0. Для вычисления коэффициента корреляции необходимо располагать двумя рядами значений переменных и только.

Точечные диаграммы на рисунке 8.16 иллюстрируют различные степени связи:

a, b, c – различные степени позитивной связи

e, f, g – различные степени негативной связи

d – отсутствие связи

Корреляционный анализ выступает в качестве одного из вспомогательных методов решения теоретических задач диагностики и включает в себя комплекс наиболее широко применяемых процедур при разработке тестовых и других методик диагностики, определения их надежности и валидности.

Одним из первых проблему использования корреляционного анализа в педагогическом измерении начал исследовать Б Битинас. После публикации его работы “Многомерный анализ в педагогике и психологии” корреляционный анализ стал довольно широко использоваться в педагогических исследованиях.

Нет смысла подробно излагать сущность и процедуру корреляционного анализа, т.к. все это описано во множестве работ, которые любой читатель этой книги без труда найдет в библиотеке.

Одна из наиболее используемых монографий, посвященных статистическому анализу написана профессором Санкт-Петербургского университета Г.Суходольским “Основы математической статистики для психологов”.Эта много раз переиздавалась, поэтому ее найти в книжных магазинах или в библиотеке не составит труда.

В последнее время появилось большое количество компьютерных программ, использование которых упростило процесс использования корреляционного анализа.

Точечная диаграмма

“Как подарок нам дана

Мыслей неоткрытых глубина,

Своего не знающая дна”.

Н. Гумилев

Будем исследовать два параметра на наличие взаимосвязи. Имея числовые значения для каждого из них, воспользуемся приемом построения точечной диаграммы. Прием пригоден только для данных, представленных в численном виде. Точечная диаграмма изображает существующую связь в виде рисунка. Она легко конструируется, если не делать некоторых ошибок. Первое: наносите на диаграмму точки, отображая каждого испытуемого только одной. Второе: не пропускайте и не переставляйте местами значения исследуемых параметров. Третье: интервалы на осях следует откладывать одинаковые. По данным таблицы 8.7 построена диаграмма 8.15.

Алгоритм построения точечной диаграммы:

выберите, какие параметры вы будете отражать на каждой из осей; не важно, что и где вы разместите;

выберите для каждой из осей масштаб и расположите на них все имеющиеся значения; проверьте, вы ничего не забыли;

каждого испытуемого обозначьте на диаграмме точкой так, чтобы показанные им значения параметров содержались на перпендикулярах к осям, проведенным из этой точки

Обработка диаграммы

“Измерить океан глубокий,

Страницы: 7 8 9 10 11 12 13 14

Смотрите также:

Классификация и содержание подвижных игр применительно к задачам развития двигательных качеств в программе по физической культуре
Существует несколько классификаций подвижных игр . Традиционно игры различают по наличию/отсутствию инвентаря, по количеству участников, по степени интенсивности и специфики физической подготовки, наличию/отсутствию ведущего, месту проведения (двор, комната, водоем), по элементам разметки пространс ...

Семантические когнитивные карты
Следующим способом учета семантики личности в обучении является методика создания семантических когнитивных карт. Требования к созданию семантических когнитивных карт: карта должна представлять собой целостный образ, который объединяет в себе кодирование объемного содержания информации; желательно, ...

Методика развития речи детей младшего дошкольного возраста
В методику речевого развития детей младшего дошкольного возраста входили серии занятий и упражнений по развитию речи и дидактических игр, направленных на развитие речи. Целью данного этапа является формирование качественных характеристик речи и речевого поведения младших дошкольников посредством ди ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2021 - All Rights Reserved - www.newlypedagog.ru