Первый из них основан на правиле порядка действий, второй — на сочетательном законе умножения, третий — на переместительном и сочетательном законах умножения.
Распределительный закон умножения относительно сложения рассматривается в школе на конкретных примерах и носит название правил умножения числа на сумму и суммы на число. Рассмотрение этих двух правил диктуется методическими соображениями.
Правила деления суммы на число и числа на произведение
Познакомимся с некоторыми свойствами деления натуральных чисел. Выбор этих правил определен содержанием начального курса математики.
Правило деления суммы на число. Если числа а и Ь делятся на число с, то и их сумма а + Ь делится на с; частное, получаемое при делении суммы а+Ь на число с, равно сумме частных, получаемых при делении а на с и Ъ на с, т. е.
(а + Ь): с = а: с + b: с.
Доказательство. Так как а делится на с, то существует такое натуральное число т = а:с, что а = с-т. Аналогично существует такое натуральное число п — Ь:с, что Ь = с-п. Тогда а+Ь = = c-m + c-/2 = c-(m + n). Отсюда следует, что а+Ь делится на с и частное, получаемое при делении а+Ь на число с, равно т+п, т. е. а:с+Ь:с.
Доказанное правило можно истолковать с теоретико-множественных позиций.
Пусть а = п{А), Ь = п(В), причем АГ\В=0. Если каждое из множеств А и В можно разбить на с равномощных подмножеств, то и объединение этих множеств допускает такое же разбиение.
При этом если в каждом подмножестве разбиения множества А содержится а:с элементов, а в каждом подмножестве множества В содержится Ь:с элементов, то в каждом подмножестве множества А[)В содержится а:с+Ь:с элементов. Это и значит, что (а + Ь): с = а: с + Ь: с.
Правило деления числа на произведение. Если натуральное число а делится на натуральные числа Ъ и с, то, чтобы разделить а на произведение чисел Ъ и с, достаточно разделить число а на b (с) и полученное частное разделить на с (Ь): а:(Ь • с) —(а: Ь): с = (а:с): Ь Доказательство. Положим (а:Ь):с = х. Тогда по определению частного а:Ь = с-х, отсюда аналогично а — Ь-(сх). На основании сочетательного закона умножения а = (Ьс)-х. Полученное равенство означает, что а:(Ьс) = х. Таким образом, a:(bc) = (a:b):c.
Правило умножения числа на частное двух чисел. Чтобы умножить число на частное двух чисел, достаточно умножить это число на делимое и полученное произведение разделить на делитель, т. е.
a-(b:c) = (a-b):c.
Применение сформулированных правил позволяет упростить вычисления.
Например, чтобы найти значение выражения (720+ 600): 24, достаточно разделить на 24 слагаемые 720 и 600 и полученные частные сложить:
(720+ 600): 24 = 720:24 + 600:24 = 30 + 25 = 55. Значение выражения 1440:(12• 15) можно найти, разделив сначала 1440 на 12, а затем полученное частное разделить на 15:
1440: (12 • 15) = (1440:12): 15 = 120:15 = 8.
Указанные правила рассматриваются в начальном курсе математики на конкретных примерах. При первом знакомстве с правилом деления суммы 6 + 4 на число 2 привлекаются иллюстративный материал. В дальнейшем это правило используется для рационализации вычислений. Правило деления числа на произведение широко применяется при делении чисел, оканчивающихся нулями.
Опыт учителей по формированию текстовых умений учащихся 4-го класса на
уроках русского языка
Умение работать с текстом – важное общеучебное умение, характеризующее не только уровень функциональной грамотности, но и культуры человека вообще. Учителя начальных классов формируют текстовые умения своих учащихся с помощью проведения таких видов работы как сочинение и изложение. Сочинение – это ...
Взаимодействие педагогов и родителей для реализации современной модели художественно-эстетического образования в ДОУ
То, что ребенок в детские годы приобретает в семье, он сохраняет в течение всей последующей жизни. Важность семьи как института воспитания обусловлена тем, что в ней ребенок находится в течение значительной части своей жизни, и по длительности воздействия на личность ни один из институтов воспитани ...
Технология деятельностного метода обучения
Метод обучения, при котором ребенок не получает знания в готовом виде, а добывает их сам в процессе собственной учебно-познавательной деятельности называется деятельностным методом. По мнению А. Дистервега, деятельностный метод обучения является универсальным. «Сообразно ему следовало бы поступать ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.