Первый из них основан на правиле порядка действий, второй — на сочетательном законе умножения, третий — на переместительном и сочетательном законах умножения.
Распределительный закон умножения относительно сложения рассматривается в школе на конкретных примерах и носит название правил умножения числа на сумму и суммы на число. Рассмотрение этих двух правил диктуется методическими соображениями.
Правила деления суммы на число и числа на произведение
Познакомимся с некоторыми свойствами деления натуральных чисел. Выбор этих правил определен содержанием начального курса математики.
Правило деления суммы на число. Если числа а и Ь делятся на число с, то и их сумма а + Ь делится на с; частное, получаемое при делении суммы а+Ь на число с, равно сумме частных, получаемых при делении а на с и Ъ на с, т. е.
(а + Ь): с = а: с + b: с.
Доказательство. Так как а делится на с, то существует такое натуральное число т = а:с, что а = с-т. Аналогично существует такое натуральное число п — Ь:с, что Ь = с-п. Тогда а+Ь = = c-m + c-/2 = c-(m + n). Отсюда следует, что а+Ь делится на с и частное, получаемое при делении а+Ь на число с, равно т+п, т. е. а:с+Ь:с.
Доказанное правило можно истолковать с теоретико-множественных позиций.
Пусть а = п{А), Ь = п(В), причем АГ\В=0. Если каждое из множеств А и В можно разбить на с равномощных подмножеств, то и объединение этих множеств допускает такое же разбиение.
При этом если в каждом подмножестве разбиения множества А содержится а:с элементов, а в каждом подмножестве множества В содержится Ь:с элементов, то в каждом подмножестве множества А[)В содержится а:с+Ь:с элементов. Это и значит, что (а + Ь): с = а: с + Ь: с.
Правило деления числа на произведение. Если натуральное число а делится на натуральные числа Ъ и с, то, чтобы разделить а на произведение чисел Ъ и с, достаточно разделить число а на b (с) и полученное частное разделить на с (Ь): а:(Ь • с) —(а: Ь): с = (а:с): Ь Доказательство. Положим (а:Ь):с = х. Тогда по определению частного а:Ь = с-х, отсюда аналогично а — Ь-(сх). На основании сочетательного закона умножения а = (Ьс)-х. Полученное равенство означает, что а:(Ьс) = х. Таким образом, a:(bc) = (a:b):c.
Правило умножения числа на частное двух чисел. Чтобы умножить число на частное двух чисел, достаточно умножить это число на делимое и полученное произведение разделить на делитель, т. е.
a-(b:c) = (a-b):c.
Применение сформулированных правил позволяет упростить вычисления.
Например, чтобы найти значение выражения (720+ 600): 24, достаточно разделить на 24 слагаемые 720 и 600 и полученные частные сложить:
(720+ 600): 24 = 720:24 + 600:24 = 30 + 25 = 55. Значение выражения 1440:(12• 15) можно найти, разделив сначала 1440 на 12, а затем полученное частное разделить на 15:
1440: (12 • 15) = (1440:12): 15 = 120:15 = 8.
Указанные правила рассматриваются в начальном курсе математики на конкретных примерах. При первом знакомстве с правилом деления суммы 6 + 4 на число 2 привлекаются иллюстративный материал. В дальнейшем это правило используется для рационализации вычислений. Правило деления числа на произведение широко применяется при делении чисел, оканчивающихся нулями.
Сущность и задачи дифференцированного обучения
Дифференциация в переводе с латинского “difference” означает разделение, расслоение целого на различные части, формы, ступени. В справочнике «проффесиональное образование» дается следующее определение дифференцированного обучения: Дифференцированное обучение - это: Распределение учебных планов и пр ...
Виды текстов
Практика показывает, что текст становится на школьных уроках полноправным объектом изучения как максимально информативная единица языка в речи, интегрирующая значение всех языковых средств. Внимание к закономерностям построения текстов разных функционально-смысловых типов речи, стилей, жанров помог ...
Развивающие игры - как средство умственного и всестороннего развития детей
Большое значение в умственном и всестороннем развитии детей имеют занимательные развивающие игры, задачи, развлечения. Они интересны для детей, эмоционально захватывают их. А процесс решения поиска ответа, основанный на интересе к задаче, невозможен без активной работы мысли. Этим положением и объя ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.