Поиск пути решения заканчивается составлением плана решения задачи. Под планом решения будем понимать объяснение того, что узнаем, выполнив то или иное действие, и указание по порядку выполнения арифметических действий. Приведем пример поиска решения задачи аналитическим путем.
Пример. В трех школах 1072 ученика, во второй на 16 учеников больше, чем в третьей, и на 14 учеников меньше, чем в первой. Сколько учеников в каждой школе?
Краткая запись задачи показана на рисунке.
Поиск пути решения. Чтобы определить число учащихся в каждой школе, надо сначала узнать число учащихся в одной из школ и разность между этим числом учащихся других школ.
В условии дана разность числа учащихся второй и третьей школ и разность числа учащихся первой и второй школ. Поэтому в первую очередь удобнее определять число учащихся второй школы; для этого приравниваем число учащихся первой и третьей школ к числу учащихся второй школы. Чтобы узнать, сколько было бы учащихся в трех школах, если бы в каждой школе было столько, сколько во второй, надо знать настоящее число учащихся трех школ (дано в условии) и на сколько учеников оно увеличится или уменьшится при предполагаемом изменении числа учащихся первой и третьей школ. Последнее число определим, зная, что число учащихся первой школы надо уменьшить на 14 учеников (чтобы уравнять со второй школой), а число учащихся третьей школы увеличить на 16.
План решения.
На сколько учеников увеличилось бы общее число трех школ, если бы в каждой школе число учеников было бы таким же, как во второй?
Сколько учеников было бы в трех школах, если бы число учеников в каждой школе было бы таким же, как во второй школе?
Сколько учеников во второй школе?
Сколько учеников в первой школе?
Сколько учеников в третьей школе?
Во втором случае (синтетический путь) решающий выделяет в тексте задачи два каких-либо данных и на основе связи между ними, установленной при анализе, определяет, какое неизвестное может быть найдено по этим данным и с помощью какого действия. Затем, считая полученное число данным, решающий опять выделяет два взаимосвязанных данных и определяет, какое неизвестное может быть найдено по ним и с помощью какого действия, и т.д., пока выполнение очередного действия не приведет к определению искомого.
Пример. У трех братьев была некоторая сумма денег: у первого и второго вместе 600 р., у второго и третьего вместе 500 р., у третьего и первого 700 р. Сколько денег было у каждого брата в отдельности?
Решение. Краткая запись задачи показана на рисунке.
I и II - 600 р.
II и III - 500 р.
I и III - 700 р.
Сколько денег было у каждого брата в отдельности?
Поиск пути решения. Зная, что у первого и второго братьев вместе 600 р., а у второго и третьего вместе 500 р., можем найти, на сколько денег у первого брата больше, чем у третьего.
По сумме и разности денег первого и третьего узнаем, чему равно удвоенное количество денег третьего брата, а затем, сколько денег имеет каждый из них. После этого можно найти, сколько денег у второго.
План решения.
На сколько рублей у первого брата больше, чем у третьего?
Чему равно удвоенное количество денег третьего брата?
Сколько денег имел третий брат?
Сколько денег имел первый брат?
Сколько денег имел второй брат?
При решении задач анализ и синтез в рассуждениях, как правило, переплетаются. Осуществляя поиск пути решения задачи синтетически, анализ часто производят «про себя». В то же время, каким бы приемом мы не вели поиск пути решения составной задачи, ее предварительный анализ (хотя бы подсознательный) неизбежен.
Учитель новой формации: кто он, преподаватель школы будущего
Тему учителей новой формации я взяла не случайно, так как это в наше время очень обсуждаемая тема. Говоря о специалистах новой формации, можно сказать, что педагог должен всегда стремится к новому, изучать новые технологии и, конечно же, не отставать от развития современной техники. Во все времена, ...
Понятие дистанционного обучения
Термин "дистанционное обучение" (distance education) еще до конца не устоялся как в русскоязычной, так и в англоязычной педагогической литературе. Встречаются такие варианты как "дистантное образование" (distant education), "дистантное обучение" (distant learning). Нек ...
Технология деятельностного метода обучения
Метод обучения, при котором ребенок не получает знания в готовом виде, а добывает их сам в процессе собственной учебно-познавательной деятельности называется деятельностным методом. По мнению А. Дистервега, деятельностный метод обучения является универсальным. «Сообразно ему следовало бы поступать ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.