По содержанию задачи классифицируют на: «задачи на движение», «задачи на части», «задачи на проценты» и т.д. внутри каждого типа в зависимости от логической структуры задачи разделяют виды задач. Так, например, различают вид задач на встречное движение в одну сторону и движение в противоположные стороны, различают задачи на нахождение части числа и нахождение числа по заданной его части, нахождение соотношения чисел, различают задачи на нахождение нескольких процентов числа, нахождение числа по его проценту, нахождение процентного отношения или выражение частного в процентах.
(Методика работы над задачами подобной классификации будет рассмотрена ниже).
По характеру требований выделяют следующие группы задач:
задачи на вычисление;
задачи на построение;
задачи на доказательство;
задачи текстовые;
задачи комбинаторного характера.
Пример задачи на вычисление:
Среди людей 3% левшей и 7% людей, не подверженных морской болезни. В школе учится 1200 учащихся. Сколько среди них может быть левшей и не подверженных морской болезни?
Пример задачи на построение:
Построить равнобедренный треугольник по боковой стороне и углу при основании.
Пример задачи на доказательство:
Докажите, что в любом треугольнике сумма трех высот меньше периметра треугольника.
Пример задачи текстовой:
За 9 часов по течению реки теплоход проходит тот же путь, что за 11 часов против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.
Пример задачи комбинированного характера:
Постройте треугольник по двум сторонам и углу между ними и вычислите его площадь.
Г.В. Дорофеев делит задачи на два типа:
задачи, в которых речь идет о некоторой реальной, а более точно, о реализованной жизненной ситуации;
задачи потенциального характера, в которых жизненную ситуацию требуется сконструировать, смоделировать, выяснить условия, при которых она реализована.
Приведенные классификации позволяют учителю представить себе проблемы, связанные с методикой обучения учащихся решению задач.
Центральное место в формировании у учащихся 1 – 6 классов умение решать текстовые задачи должно занимать обучение общим приемам работы над такими задачами, причем оно должно строиться с учетом перехода от арифметического способа решения к алгебраическому.
Развивающие игры - как средство умственного и всестороннего развития детей
Большое значение в умственном и всестороннем развитии детей имеют занимательные развивающие игры, задачи, развлечения. Они интересны для детей, эмоционально захватывают их. А процесс решения поиска ответа, основанный на интересе к задаче, невозможен без активной работы мысли. Этим положением и объя ...
Введение отрицательных чисел. Определения свойств
действий над целыми числами
Следующее расширение понятия числа – знакомство учащихся с отрицательными числами. С методической стороны введение отрицательных чисел особых затруднений не представляет, т.к. дети часто встречаются в жизни. Наибольшую трудность в их изучении представляет обоснование действии над ними. Введение пон ...
Диагностика выявления уровней речевого развития детей младшего дошкольного
возраста
Эксперимент проводился на базе «Государственного учреждения образования «Санаторный ясли-сад №4» г. Рогачева. В эксперименте принимали участие 15 детей второй младшей группы:12 детей – 4 года, 3 ребенка – 3 года, в группе 9 мальчиков, 6 девочек. Цель исследовательской деятельности состояла в том, ч ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.