Итак, весь процесс решения задачи можно разделить на восемь этапов:
1-й этап – анализ задачи;
2-й этап – схематическая запись задачи;
3-й этап – поиск способа решения задачи;
4-й этап – осуществление решения задачи;
5-й этап – проверка решения задачи;
6-й этап – исследование задачи;
7-й этап – формулирование ответа задачи;
8-й этап – анализ решения задачи.
Приведенная схема дает лишь общее представление о процессе решения задач как о сложном и многоплановом процессе. Приведем пример решения задачи, показав конкретно этот процесс.
Лодка прошла по течению реки расстояние между двумя пристанями за 6 ч, а обратный путь она совершила за 8 ч. За сколько времени пройдет расстояние между пристанями плот, пущенный по течению реки?
Анализ задачи.
В задаче речь идет о двух объектах: лодка и плот. Лодка имеет какую-то собственную скорость, а река, по которой плывет и лодка, и лот, имеет определенную скорость течения. Именно поэтому лодка совершает путь между пристанями по течению реки за меньшее время (6 ч), чем против течения (8 ч). Но эти скорости (собственная скорость лодки и скорость течения реки) в задаче не даны (они неизвестны), так же как неизвестно расстояние между пристанями. Однако требуется найти не эти неизвестные скорости и расстояния, а время, за которое плот проплывет неизвестное расстояние между пристанями.
Схематическая запись задачи.
Поиск способа решения задачи.
Нужно найти время, за которое плот проплывает расстояние между пристанями А и В. Для того чтобы найти это время, надо знать расстояние АВ и скорость течения реки. Оба они неизвестны, поэтому обозначим расстояние АВ буквой s (км), а скорость течения реки примем равной а км/ч. Чтобы связать эти неизвестные с данными задачи (время движения лодки по и против течения реки), нужно еще знать собственную скорость лодки. Она тоже неизвестна, положим, что она равна V км/ч. Отсюда естественно возникает план решения, заключающийся в том, чтобы составить систему уравнений относительно введенных неизвестных.
Осуществление решения задачи.
Итак, пусть расстояние АВ равно s км, скорость течения реки а км/ч, собственная скорость лодки V км/ч, а искомое время движения плота на пути в s км равно х ч. Тогда скорость лодки по течению реки равна (V + a) км/ч. За 6 ч лодка, идя с этой скоростью, прошла путь АВ в s км. Следовательно,
6 (V + a) = s
Против течения эта лодка идет со скоростью (V - a) км/ч и путь АВ в s км она пройдет за 8 ч, поэтому
8 (V - a) =s
Наконец, плот, плывя со скоростью а км/ч, покрыл расстояние s км за х ч, следовательно,
ах = s
Уравнения (1), (2), (3) образуют систему уравнений относительно неизвестных s, а, V и х. Так как требуется найти лишь х, то остальные неизвестные постараемся исключить.
Для этого из уравнений (1) и (2) найдем:
V + а =
, V – a =
.
Вычитая из первого уравнения второе, получим:
2а =
-
, отсюда а =
.
Влияние дифференцированного подхода на развитие
двигательных качеств
Структура содержания общего образования в сфере физической культуры предполагает выделение как минимум двух блоков: образовательного, представляющего собой базовую основу интеллектуального компонента физической культуры, и двигательного совершенствования, являющегося основой ее двигательного компон ...
Формирование системных знаний о труде взрослых у
детей дошкольного возраста
В дошкольные годы дети проявляют живой интерес к труду взрослых, в игре и быту стремятся им подражать и желают сами что-то сделать. До семи лет они легко овладевают несложными трудовыми умениями по самообслуживанию, поддержанию чистоты и порядка, уходу за растениями. Ознакомление с трудом взрослых ...
Понятие преемственности
Понятию преемственность дается множество определений, приведем несколько из них: Преемственность предполагает целостный процесс, обеспечивающий полноценное личностное развитие, физиологическое и психологическое благополучие ребенка в переходный период от дошкольного воспитания к школе, направленный ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.