Сравнительный анализ методики ознакомления сравенствами

Страница 1

Изучение алгебраического материала начинается с подготовительного класса и проходит в тесной связи с изучением арифметического и геометрического материала.

Учащиеся начальных классов знакомятся с такими важнейшими понятиями как равенство, неравенство, уравнение.

Что же такое равенство, неравенство, уравнение?

Пусть а и в — числовые выражения. Числовые выражения или числа, между которыми стоит знак равенства, называются числовыми равенствами.

Неравенство — отношение, связывающее два числовые выражения или два числа посредством одного из знаков ”>” (больше), ”<” (меньше), ”³” (больше или равно), ”£” (меньше или равно), ”¹” (не равно).

Равенство с переменной f(х) = g(х) называется уравнением с одной переменной.

Переходим к краткому обзору методики ознакомления с числовыми равенствами, неравенствами, уравнениями в традиционной школе.

Понятия о равенствах, неравенствах, уравнениях раскрываются во взаимосвязи.

Числовые равенства и неравенства изучаются параллельно. Упражнения с равенствами и неравенствами используются для раскрытия и применения арифметических знаний, а также для выработки вычислительных навыков.

Ознакомление с равенствами и неравенствами в традиционной школе непосредственно связывается с изучением нумерации и арифметических действий и происходит в несколько этапов.

Непосредственное сравнивание предметов

На подготовительном этапе в дочисловой период, нужно в процессе практических упражнений с использованием пар понятий научить детей сравнивать предметы и устанавливать отношение “больше”, “меньше”, “одинаково”. Приведем примеры наиболее распространенных пар понятий: больше-меньше, выше-ниже, шире-уже, правее-левее, старше-моложе, тяжелее-легче, толще-тоньше, дальше-ближе, быстрее-медленнее.

С первых же уроков отрабатывается умение сравнивать численности множеств. При этом начинать нужно с упражнений на установление между множествами взаимно однозначного соответствия.

Основой таких упражнений могут служить различные ситуации из обыденной жизни: каждому ученику в классе взаимно однозначно соответствует его ранец; каждой чашке в чайном приборе однозначно отвечает блюдце, на которое ставят чашку.

Предлагая учащимся упражнения на сравнение численности множеств, целесообразно начинать с множеств, каждое из которых составлено из однородных предметов, например, одно множество состоит из треугольников, другое — из квадратов. Через некоторое время переходят к сравнению множеств разнородных предметов.

Полезно ознакомить учащихся с различными приемами попарного соотнесения предметов двух множеств. Первым приемом будет являться наложение предметов на наборном полотне друг на друга. Второй прием — изымание по одному предмету из каждого множества и откладывание полученных пар. Третий прием — сравнение двух множеств, элементы которых нельзя изымать, например, множеств предметов, изображенных на рисунке. Четвертый прием целесообразно применять для сравнения двух множеств, нарисованных предметов, если эти предметы не расположены линейно. Такое сравнение предметов “один к одному” дает возможность устанавливать не только, где больше, а где меньше, но и на сколько больше, на сколько меньше. Уже в подготовительный период включают упражнения на преобразование неравночисленных множеств в равночисленные и обратно.

Таким образом происходит непосредственный способ сравнения предметов в традиционной школе.

Система РО. Необходимость сравнения по какому-либо признаку возникает в ситуации восстановления какого-либо объекта, обладающего изучаемыми свойствами.

Именно задача восстановления (а затем и воспроизведения) вынуждает ребенка выделить свойства предметов и сконструировать способы их сравнения по выделенному признаку.

Сначала ребенок выполняет практическое действие сравнения различных реальных предметов, которые можно взять в руки. В школе дети должны работать не с рисунками, а с реальными предметами. Желательно, чтобы каждый ребенок имел возможность работать с предметным материалом. Если такой возможности нет, и учитель использует демонстрационные пособия, то с ним работает не учитель, а дети (по очереди выходя к доске), с их помощью показывая, как они мыслят.

Затем ребенок сравнивает объекты, которые нельзя взять в руки.

Каким же образом это происходит?

а) выделяются те признаки предмета, по которым его можно сравнивать с другими;

б) находят разные способы сравнения предметов, например, при сравнении по длине дети опираются на зрительное восприятие, т.е. первоначально сравнивают “на глаз”, а затем, когда этот способ не срабатывает, находят другие способы (наложение, приложение).

Страницы: 1 2 3 4 5 6

Смотрите также:

Модель "Школы социальной деятельности подростка"
В настоящее время в красноярском лицее №1 под руководством кафедры общей педагогики КрасГУ реализуется проект "Школа социальной деятельности подростка", направленный на разработку и апробацию новой образовательной технологии продуктивного обучения, обеспечивающей решения большого спектра ...

Содержание, формы и методы изучения «легкой» музыки в общеобразовательной школе
Музыкально-эстетическая культура представляет собой комплекс качеств личности, включающий способность воспринимать музыку эмоционально как живое творчество, понимать ее образное содержание, оценивать как художественно-эстетическое явление и свободно оперировать музыкальными представлениями в сознан ...

Виды текстов
Практика показывает, что текст становится на школьных уроках полноправным объектом изучения как максимально информативная единица языка в речи, интегрирующая значение всех языковых средств. Внимание к закономерностям построения текстов разных функционально-смысловых типов речи, стилей, жанров помог ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2025 - All Rights Reserved - www.newlypedagog.ru