В обучении математике роль задач определяется, с одной стороны, тем, что конечные цели этого обучения сводятся к овладению учащихся методами решения определенной системы математических задач. С другой стороны, она определяется и тем, что полноценное достижение целей обучения возможно лишь с помощью решения учащимися системы учебных и математических задач. Таким образом, решение задач в обучении математике выступает и как цель, и как средство обучения. Важнейшей функцией решения задач является функция формирования и развития у учащихся общих умений решений любых математических (в том числе и прикладных) задач. Общее умение по решению задач следует отличать от частных умений решения задач определенного вида. В основе частных умений лежит изучаемые учащимися частные методы (алгоритмы и эвристические схемы) решения задач данного вида. Считается, что общие умения могут возникнуть лишь благодаря решению большого числа задач. «Если хотите научиться решать задачи, то решайте их!» – советует Д. Пойа. Следуя этому совету, учителя предлагают учащимся огромное количество задач и затрачивают на их решение не менее половины всего учебного времени. А результаты этой работы более чем скромные: большинство учащихся, встретившись с задачей незнакомого или малознакомого вида, не знают, как к ней подступиться, с чего начать решение, и при этом обычно произносят: «А мы такие не решали».
Общие знания о задачах и механизмах их решения нужны для того, чтобы решение задач приносило наибольший познавательный эффект, чтобы процесс их решения превратился в подлинный метод обучения учащихся определенным знаниям и навыкам.
Каковы же знания, которые должны быть усвоены учащимися о задачах и их решении?
Это общие представления о задачах и процессах их возникновения из реальных и абстрактных проблемных ситуаций; о составных частях и структуре задач; об основных видах задач в зависимости от характера объекта и требований задачи; общие представления о сущности процесса решения задач и конкретизация их в отношении каждого вида задач; о структуре и этапах процесса решения задач.
Главное – сформировать такой общий подход к решению задач, когда задача рассматривается как объект для анализа, для исследования, а ее решение – как конструирование и изобретение способа решения. Это осуществляется в процессе обучения математике с помощью основополагающих принципов дидактики. Действительно, в обучении реализуются следующие принципы:
Принцип научности отражает взаимосвязь с современным научным знанием. Этот принцип воплощается в отборе изучаемого материала, в порядке и последовательности введения научных понятий в учебный процесс.
Принцип научности нацеливает учителя на вовлечение школьников в проведение анализа результатов собственных наблюдений, в самостоятельное их (результатов) исследование.
Принцип систематичности и последовательности придает системный характер учебной деятельности, теоретическим знаниям, практическим умениям учащегося. Этот принцип предполагает усвоение знаний в определенном порядке, системе. Требование систематичности и последовательности в обучении нацелено на сохранение преемственности содержательной и процессуальной сторон обучения, при которых каждый урок –это логическое продолжение предыдущего как по содержанию изучаемого учебного материала, так и по характеру, способам выполняемой учениками учебно-познавательной деятельности.
Психолого-педагогическая коррекционная программа по развитию речи детей
дошкольного возраста с задержкой психического развития на уроках ритмики и
физической культуры
Особое внимание в формировании связной речи необходимо уделять при проведении коррекционной работы с дошкольниками, имеющими задержку психического развития. У детей старшего дошкольного возраста с ЗПР наблюдается значительное отставание в формировании навыков описательно-повествовательной речи. Сер ...
Разработка диагностического инструментария
выявления уровня сформированности ситуативной связной речи детей среднего дошкольного
возраста с комплексными нарушениями речи
Целью практической части нашего исследования является изучение особенностей развития ситуативной связной речи у детей среднего дошкольного возраста с комплексными речевыми нарушениями, и в соответствии с этим разработать систему работы по формированию данной формы речи. Для этого нами была составле ...
Пятый этап в математике конечных количеств
Пятый этап состоит в проектировании конечного количества в заданную форму. Выясняется, что конечное количество не всегда может быть построено в форме таких геометрических фигур, как квадрат, прямоугольник или куб. Теперь новым качественным состоянием является конструктивность или возможность констр ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.