Упражнения на распознавание геометрических фигур, а также на определение формы разных предметов можно проводить вне занятий, как небольшими группами, так и индивидуально, используя игры «Домино», «Геометрическое лото» и др.
Следующая задача - научить детей составлять плоские геометрические фигуры путем преобразования разных фигур. Например, из двух треугольников сложить квадрат, а из других треугольников – прямоугольник. Затем из двух-трех квадратов, сгибая их разными способами, получать новые фигуры (треугольники, прямоугольники, маленькие квадраты).
Эти задания целесообразно связывать с упражнениями по делению фигур на части. Например, детям даются большие круг, квадрат, прямоугольник, которые делятся на две и четыре части. Все фигуры с одной стороны окрашены в одинаковый цвет, а с другой – каждая фигура имеет свой цвет. Такой набор дается каждому ребенку. Вначале дети смешивают части всех трех фигур, каждая из которых разделена пополам, сортируют их по цвету и в соответствии с образцом составляют целое. Далее вновь смешивают части и дополняют их элементами тех же фигур, разделенных на четыре части, снова сортируют и снова составляют целые фигуры. Затем все фигуры и их части поворачивают другой стороной, имеющей одинаковый цвет, и из смешанного множества разных частей выбирают те, что нужны для составления круга, квадрата, прямоугольника. Последняя задача является более сложной для детей, так как все части одноцветны и приходится делать выбор только по форме и размеру.
Можно и дальше усложнять задание. Разделив по-разному на две и четыре части квадрат и прямоугольник, например квадрат – на два прямоугольника и два треугольника или на четыре прямоугольника и четыре треугольника (по диагонали), а прямоугольник – на два прямоугольника и два треугольника или на четыре прямоугольника, а из них два маленьких прямоугольника – на четыре треугольника. Количество частей увеличивается, и это усложняет задание.
Очень важно упражнять детей в комбинировании геометрических фигур, в составлении разных композиций из одних и тех же фигур. Это приучает их всматриваться в форму различных частей любого предмета, читать технический рисунок при конструировании. Из геометрических фигур могут составляться изображения предметов.
Вариантами конструктивных заданий будет построение фигур из палочек и преобразование одной фигуры в другую путем удаления нескольких палочек:
-сложить два квадрата из семи палочек;
-сложить три треугольника из семи палочек;
-сложить прямоугольник из шести палочек;
-из пяти палочек сложить два разных треугольника;
-из девяти палочек составить четыре равных треугольника;
-из десяти палочек составить три равных квадрата;
-можно ли из одной палочки на столе построить треугольник?
-можно ли из двух палочек построить на столе квадрат?
Эти упражнения способствуют развитию сообразительности, памяти, мышления детей.
Знания о геометрических фигурах и форме предметов в подготовительной группе расширяются, углубляются и систематизируются.
Одна из задач подготовительной к школе группы - познакомить детей с многоугольником, его признаками: вершины, стороны, углы. Решение этой задачи позволит подвести детей к обобщению: все фигуры, имеющие по три и более угла, вершины, стороны, относятся к группе многоугольников.
Детям показывают модель круга и новую фигуру – пятиугольник. Предлагают сравнить их и выяснить, чем отличаются эти фигуры. Фигура справа отличается от круга тем, что имеет углы, много углов. Детям предлагается прокатить круг и попытаться прокатить многоугольник. Он не катится по столу. Этому мешают углы. Считают углы, стороны, вершины и устанавливают, почему эта фигура называется многоугольником. Затем демонстрируется плакат, на котором изображены различные многоугольники. У отдельных фигур определяются характерные для них признаки. У всех фигур много сторон, вершин, углов. Как можно назвать все эти фигуры, одним словом? И если дети не догадываются, воспитатель помогает им.
Для уточнения знаний о многоугольнике могут быть даны задания по зарисовке фигур на бумаге в клетку. Затем можно показать разные способы преобразования фигур: обрезать или отогнуть углы у квадрата и получится восьмиугольник. Накладывая два квадрата друг на друга, можно получить восьмиконечную звезду.
Упражнения детей с геометрическими фигурами, как и в предыдущей группе, состоят в опознавании их по цвету, размерам в – разном пространственном положении. Дети считают вершины, углы и стороны, упорядочивают фигуры по их размерам, группируют по форме, цвету и размеру. Они должны не только различать, но и изображать эти фигуры, зная их свойства и особенности. Например, воспитатель предлагает детям нарисовать на бумаге в клетку два квадрата: у одного квадрата длина сторон должна быть равна четырем клеткам, а у другого – на две клетки больше.
Взаимодействие между учащимися
Это третий вид взаимодействия, новое измерение дистанционного образования, которое станет вызовом нашему мышлению и практике в девяностых годах. Это взаимодействие между учащимися, между отдельно взятым учащимся и другими учащимися в составе группы или без нее, в присутствии преподавателя или без н ...
Проблема формирования вычислительных навыков младших школьников в
современных условиях
Концепция модернизации российского образования на период до 2010 года определяет цели общего образования на современном этапе. Она подчеркивает необходимость «ориентации образования не только на усвоение обучающимся определенной суммы знаний, но и на развитие его личности, его познавательных и сози ...
Обучение решению задач-головоломок детей дошкольного возраста
В истории развития дошкольной дидактики и методики формирования математических представлений место и роль занимательного материала рассматривались с разных позиций. В начале нашего столетия, когда не было специальных работ, направленных на раскрытие вопросов методики обучения дошкольников математик ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.