Второй этап в математике конечных количеств

Развитие математики конечных количеств начинается с установлении связи между двумя конечными количествами. Способность отражать такую связь порождается новым отношением «связано-несвязано». В возрасте до 3 лет оно определяется установлением связи между двумя сенсорными объектами. В возрасте от 3 до 6 лет оно определяется уже разработкой логических средств отражения связности.

Мы встречаемся снова с проблемой разработки логического инструмента (таковым является отношение, которое реализуется системой координации объектов в указанных конечных количествах). Затем создается способ нахождения такой координации. Наконец, разрабатывается форма представления связи между двумя конечными количествами.

При создании такой связи ребенок может (не определяя величины каждого конечного количества) определить равенство или неравенство между величинами конечных количеств. Больше того, с помощью координации можно найти меру связи между величинами любых двух конечных количеств. Такая мера связи между величинами уже является качественно новой формой меры-функциональной мерой и она показывает пропорциональность величин для двух конечных количеств.

Ребенок, способный разработать такие логические средства, уже поднимается выше на ступеньку и формирует в себе топологическое мышление на функциональном уровне. Такое отражение количественной связи натуральным соответствием становится пропедевтикой важного математического понятия «функция».

Кроме того, сама идея координации становится пропедевтикой основных идей алгебры и аналитической геометрии, для которых идея координации становится фундаметальной. С появлением уже трех конечных количеств появляется новый объект математики конечных количеств-количественное движение.

Смотрите также:

Подходы к созданию элективных курсов
Выделяют несколько подходов к созданию элективных курсов: 1) фундаментальный подход предполагает разработку содержания курса в логике перехода от фундаментальных законов и теорий к частным закономерностям, направленного на углубленное изучение предмета, ориентированного, в первую очередь, на одарен ...

Построение проекта выхода из затруднения
На данном этапе учащиеся в коммуникативной форме обдумывают проект будущих учебных действий: ставят цель (целью всегда является устранение возникшего затруднения), согласовывают тему урока, выбирают способ, строят план достижения цели и определяют средства – алгоритмы, модели и т.д. Этим процессом ...

Введение отрицательных чисел. Определения свойств действий над целыми числами
Следующее расширение понятия числа – знакомство учащихся с отрицательными числами. С методической стороны введение отрицательных чисел особых затруднений не представляет, т.к. дети часто встречаются в жизни. Наибольшую трудность в их изучении представляет обоснование действии над ними. Введение пон ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2021 - All Rights Reserved - www.newlypedagog.ru