Второй этап в математике конечных количеств

Развитие математики конечных количеств начинается с установлении связи между двумя конечными количествами. Способность отражать такую связь порождается новым отношением «связано-несвязано». В возрасте до 3 лет оно определяется установлением связи между двумя сенсорными объектами. В возрасте от 3 до 6 лет оно определяется уже разработкой логических средств отражения связности.

Мы встречаемся снова с проблемой разработки логического инструмента (таковым является отношение, которое реализуется системой координации объектов в указанных конечных количествах). Затем создается способ нахождения такой координации. Наконец, разрабатывается форма представления связи между двумя конечными количествами.

При создании такой связи ребенок может (не определяя величины каждого конечного количества) определить равенство или неравенство между величинами конечных количеств. Больше того, с помощью координации можно найти меру связи между величинами любых двух конечных количеств. Такая мера связи между величинами уже является качественно новой формой меры-функциональной мерой и она показывает пропорциональность величин для двух конечных количеств.

Ребенок, способный разработать такие логические средства, уже поднимается выше на ступеньку и формирует в себе топологическое мышление на функциональном уровне. Такое отражение количественной связи натуральным соответствием становится пропедевтикой важного математического понятия «функция».

Кроме того, сама идея координации становится пропедевтикой основных идей алгебры и аналитической геометрии, для которых идея координации становится фундаметальной. С появлением уже трех конечных количеств появляется новый объект математики конечных количеств-количественное движение.

Смотрите также:

Научно-исследовательская работа
Преддипломная педагогическая практика занимает важное место в научно-исследовательской работе будущих инженеров педагогов. Она создает условия для практического применения знаний по специальным предметам, по всем психолого-педагогическим дисциплинам. Во время практики присутствовали две формы НИРС. ...

Сущность и структура решения текстовых задач
Что значит решить задачу? В предыдущей главе мы познакомились с составными частями задачи, с тем, как следует производить анализ задач. Теперь разберемся с тем, что составляет сущность решения задачи, какова структура процесса решения, в чем особенности отдельных этапов этого процесса. Что значит р ...

Методика проведения народных подвижных игр
Народные подвижные игры должны обеспечить разностороннее развитие моторной сферы детей, а также способствовать формированию их умений действовать в коллективе, ориентироваться в пространстве, выполнять действия в соответствии с правилами или текстом игры. Поэтому надо использовать народные подвижны ...

Приёмы и методы запоминания

Приёмы и методы запоминания

На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.

Категории

Copyright © 2025 - All Rights Reserved - www.newlypedagog.ru