Математика конечных количеств начинается с понимания конечного количества. Формирование такого понимания достигается благодаря отношению «одинаковое-разное». Объединяя группу предметов в единое целое ребенок видит одинаковое в них. Такая одинаковость рождает первое качественное состояние в содержании конечного множества-однородность.
Именно идея однородности рождает потребность в отражении этой однородности, причем сначала на сенсорном уровне (до 3 лет) в распознавании одинаковых или разных сенсорных объектов. Уже потом (от 3 до 6 лет) возникает потребность в логическом отражении однородности.
Готовность ребенка к логическому отражению определяется способностями его интеллекта в создании инструмента (мера величины конечного количества, реализованная в счетах), способа отражения (измерение величины), формы представления величины (натуральное число).
Если интеллект ребенка не способен разработать такие инструменты, значит он еще не вышел на сенсорно-образный познавательный уровень и продолжает находиться на сенсорном уровне.
Когда ребенок формирует в себе способность логически отражать величину конечного количества, то он формирует в себе основы метрического мышления.
С появлением уже двух конечных количеств начинается второй этап математики конечных количеств.
Организация практических занятий по развитию лексических навыков речи
Поскольку в данной работе исследуется и изучается обучение лексике как основному компоненту речевой деятельности, то целью в ходе практики явилось выявление наиболее эффективных приёмов обучения лексике иноязычной речи. Объектом исследования был процесс обучения лексике как главному компоненту рече ...
Основные проблемы и противоречия в организации профильной подготовки, эффективность
профильного обучения
Изучение опыта профильной подготовки, предшествующей высшему профессиональному образованию в системе непрерывного образования развитых стран мира, а также опыта становления и развития региональной системы профильной подготовки в Краснодарском крае в условиях развития рыночной экономики, позволило в ...
Третий этап в математике конечных количеств
Последовательность конечных количеств отражает два изменения: изменение величины конечного количества при переходе от одного члена последовательности к другому; изменение величины связи между двумя конечными количествами, осуществляемое при таком переходе. В возрасте ребенка до 3 лет такое движение ...
На протяжении всей человеческой истории люди пытались придумать способы, с помощью которых они могли бы по возможности прочно усвоить какие-либо знания. С древнейших времён тема и техника запоминания занимала пытливые умы, рассматривалась и систематизировалась великими людьми прошлого.